April 10, 2020 by admin 0 Comments

Structurally Reinforced Biodegradable Antithrombotic Small-Caliber Vascular Grafts Immobilized with VEGF to Accelerate Endothelialization: When 3D Printing Meets Electrospun Fiber

Authors
Gladys A. Emechebe, Francis O. Obiweluozor, In Seok Jeong, Park June Kyu, Chan Hee Park, Cheol Sang Kim
Abstract
The major challenge of commercially available vascular substitutes come from their limitations in terms of good mechanical strength and host remodeling. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of native blood vessel by using nanofibrous scaffold that will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nanotopographic cue of the device is capable to directs host cell infiltration. We evaluated the burst pressure, Histology, hemocompatibility, compression test and mechanical analysis of the new graft. Hence, we proposed that future long-term studies of this technology on porcine models due to their similar vasculature regeneration to humans is needed prior to clinical translation. This acellular off-the-shelf approach will mark a paradigm shift from the current dominant focus on cell incorporation in vascular tissue engineering thus strongly influencing regenerative medicine as we move forward in this new decade.