May 21, 2016 by admin 0 Comments

Development of a polymer-based tendon-driven wearable robotic hand

Brian Byunghyun Kang, Haemin Lee, Hyunki In, Useok Jeong, Jinwon Chung, Kyu-Jin Cho
This paper presents the development of a polymer-based tendon-driven wearable robotic hand, Exo-Glove Poly. Unlike the previously developed Exo-Glove, a fabric-based tendon-driven wearable robotic hand, Exo-Glove Poly was developed using silicone to allow for sanitization between users in multiple-user environments such as hospitals. Exo-Glove Poly was developed to use two motors, one for the thumb and the other for the index/middle finger, and an under-actuation mechanism to grasp various objects. In order to realize Exo-Glove Poly, design features and fabrication processes were developed to permit adjustment to different hand sizes, to protect users from injury, to enable ventilation, and to embed Teflon tubes for the wire paths. The mechanical properties of Exo-Glove Poly were verified with a healthy subject through a wrap grasp experiment using a mat-type pressure sensor and an under-actuation performance experiment with a specialized test set-up. Finally, performance of the Exo-Glove Poly for grasping various shapes of object was verified, including objects needing under-actuation.