September 16, 2020 by admin 0 Comments

Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel

Authors
Jin Yoo ‡a, Ji Hun Park ‡b, Young Woo Kwon ‡c, Justin J. Chung a, In Cheul Choi d, Jae Joon Nam d, Hyun Su Lee e, Eun Young Jeon a, Kangwon Lee e, Soo Hyun Kim af, Youngmee Jung *ag, and Jong Woong Park *d
Abstract
Peripheral nerve injury results in significant sensory and motor functional deficits. Although direct neurorrhaphy in the early phase may reduce its devastating effects, direct end-to-end neurorrhaphy is sometimes impossible owing to a defect at the injured site of the nerve. Autogenous nerve graft is a primary consideration for peripheral nerve defects; however, significant morbidity of the donor site is inevitable. Recently, the treatment using engineered synthetic nerve conduits has been regarded as a promising strategy to promote the regeneration of peripheral nerve defects. In this study, we developed longitudinally oriented collagen hydrogel-grafted elastic nerve guidance conduits (NGC) to reconstruct sciatic nerve defects. An elastic NGC was prepared by using poly(lactide-co-caprolactone) (PLCL), and electrospun PLCL was adopted to fabricate nanoporous structures with appropriate permeability for nerve regeneration. Oriented collagen hydrogels were prepared by the 3D printing method to achieve a microscale hydrogel pattern. Based on sciatic nerve injury models in rats, we confirmed the beneficial effects of the NGC with 3D printed collagen hydrogel on axonal regeneration and remyelination along with superior functional recovery in comparison with the NGC filled with the bulk collagen hydrogel. It is believed that the aligned collagen hydrogels provide a preferable environment for nerve regeneration, functioning as an oriented guidance path. In conclusion, the PLCL nerve guide conduit containing a 3D printed aligned collagen hydrogel can be useful for peripheral nerve regeneration.

August 30, 2019 by admin 0 Comments

Bioprinting Technologies in Tissue Engineering

Authors
Bengi Yilmaz, Aydin Tahmasebifar, Erkan Türker Baran
Abstract
Bioprinting technology is a strong tool in producing living functional tissues and organs from cells, biomaterial-based bioinks, and growth factors in computer-controlled platform. The aim of this chapter is to present recent progresses in bioprinting of nerve, skin, cardiac, bone, cartilage, skeletal muscle, and other soft tissues and highlight the challenges in these applications. Various composite bioinks with bioactive ceramic-based scaffolds having patient-specific design and controlled micro-architectures were used at clinical and preclinical applications successfully for regeneration of bone. In nerve tissue engineering, bioprinting of alginate- and gelatin-based gel bioinks by extrusion presented a controllable 3D microstructures and showed satisfactory cytocompatibility and axonal regeneration. Bioprinting of cardiac progenitors in biopolymers resulted in limited success, while the use of bioinks from extracellular matrix induced satisfactory results in cardiac regeneration. Osteochondral scaffold bioprinting is challenging due to the complex hierarchical structure and limited chondral regeneration. Therefore, current approaches focused on osteochondral scaffold with vascular network and mimicking hierarchical structures. The applications of bioprinting in other types of tissues were also studied, and results showed significant potentials in regeneration of tissues such as cornea, liver, and urinary bladder.