January 5, 2020 by admin 0 Comments

Biobased thermoplastic elastomer with seamless 3D-Printability and superior mechanical properties empowered by in-situ polymerization in the presence of nanocellulose

Authors
Jun Mo Koo (a, b, 1), Jaeryeon Kang (a, 1), Sung-Ho Shin (a), Jonggeon Jegal (a), Hyun Gil Cha (a), Seunghwan Choy (c), Minna Hakkarainen (b), Jeyoung Park (a, d), Dongyeop X. Oh (a, d), Sung Yeon Hwang (a, d)
Abstract
A biobased and biocompatible thermoplastic elastomer (TPE) with superior 3D printability was demonstrated with great potential for customized manufacturing technologies and fabrication of biointegrated devices. The inherent structural and stereochemical disadvantages of biobased monomers, such as 2,5-furandicarboxylic acid, in comparison with today used petroleum based monomers like terephthalic acid generally lead to lower mechanical performance for the biobased replacement polymers. This is additionally enhanced by poor interfacial adhesion and fusion commonly encountered during customized manufacturing technologies like 3D printing. Herein, we demonstrate that in-situ polymerization in the presence of trace amounts of cellulose nanocrystals (CNCs) can homogeneously distribute the nanofiller leading to dramatically strengthened thermally 3D-printable bio-furan-based TPE. This TPE exhibited a tensile strength of 67 MPa which is 1.5–7-fold higher than the values reported for silicone and thermoplastic urethane, which are widely used in biomedical applications. In addition, the TPE had an impressive extensibility of 860% and negligible in vivo cytotoxicity; such properties have not been reported to date for bio-based or petrochemical TPEs. While a petrochemical 3D printed TPE counterpart retained only half of the tensile strength compared to the hot-pressed analogue, the 3D-printed biobased TPE in-situ modified with nanocellulose maintained 70–80% of its strength under the same experimental conditions. This is explained by inter-diffusion between interfaces facilitated by the nanocellulose and the furan rings. Using the ergonomic shape of a wrist as a 3D-printable design, we successfully manufactured a wearable thermal therapeutic device from the nanocellulose modified biobased TPE, giving promise for wide variety of future applications.

May 21, 2016 by admin 0 Comments

Development of a polymer-based tendon-driven wearable robotic hand

Authors
Brian Byunghyun Kang, Haemin Lee, Hyunki In, Useok Jeong, Jinwon Chung, Kyu-Jin Cho
Abstract
This paper presents the development of a polymer-based tendon-driven wearable robotic hand, Exo-Glove Poly. Unlike the previously developed Exo-Glove, a fabric-based tendon-driven wearable robotic hand, Exo-Glove Poly was developed using silicone to allow for sanitization between users in multiple-user environments such as hospitals. Exo-Glove Poly was developed to use two motors, one for the thumb and the other for the index/middle finger, and an under-actuation mechanism to grasp various objects. In order to realize Exo-Glove Poly, design features and fabrication processes were developed to permit adjustment to different hand sizes, to protect users from injury, to enable ventilation, and to embed Teflon tubes for the wire paths. The mechanical properties of Exo-Glove Poly were verified with a healthy subject through a wrap grasp experiment using a mat-type pressure sensor and an under-actuation performance experiment with a specialized test set-up. Finally, performance of the Exo-Glove Poly for grasping various shapes of object was verified, including objects needing under-actuation.